
TECHNICAL NOTES AND SHORT PAPERS 

Explicit Gap Series at Cusps of r(p) 

By A. 0. L. Atkin 

1. Let r(l) be the full modular group consisting of all linear fractional trans- 
formations 

' = (ar + b)/(c-r + d) (a, b, c, d, rational integers and ad - bc = 1), 

and define subgroups as follows. 
ro(n) : c 0 (mod n) 
roe(n): b c 0_ (mod n) 
rn : c _O, a _ d 1 (mod n) 
r(n) : b-c =_ O, a d d--1 (mod n). 
Any of these subgroups (say r) is a discontinuous group acting on H, the upper 

half-plane; we may regard Hlr (compactified) as a Riemann surface S, genus g. 
With regard to a given point 7o of S we say that an integer n > 1 is a gap if there 
exists no function with a pole of order n at ro and regular elsewhere in S; otherwise 
n is a nongap. Weierstrass' Gap Theorem asserts that there are just g gaps 
ni (i = 1 to g) and that these satisfy 1 < ni < 2g - 1; the sequence (ni) is called 
the gap series at ro. For all but finitely many ro the gap series is 1 to g; these ex- 
ceptional ro for which this is not true are called Weierstrass points of r (or, strictly, 
of S). 

It is known (Schoeneberg [1]) that the cusp* r = ioo of r(n) is a Weierstrass 
point for n > 7 (and, since r(n) is normal in r(1), that all cusps are then Weier- 
strass points). For reo(n) it is known that io is a Weierstrass point for n = 8 
and n ? 10 (Atkin [2]). Smart [3] has obtained much detailed information in gen- 
eral as to the gap series on r(n), and proposed to me (private communication) the 
problem of its explicit determination in given cases (Lewittes [4] has done this for 
n = 7 to 10 and 12). For the case n = p, a prime, I give below a method which 
was successful for p = 11, 13, 17, 19, using the ICT Atlas I computer of the Sci- 
ence Research Council at Chilton; for p > 23 the machine time required became 
excessive. The actual results appear in Table 1 at the end of Section 3. 

2. We now suppose p > 5 is a prime, and consider the functions 

(2.1) Wk(Tr) = exp (l2irik2 r/p) * tA(4k1r T I p T)/t(2klr T I p T) 

studied by Fine [5], who established the transformation equation 

(2.2) Wk((aT + b)/(cT + d)) = exp (127rik2ab/p) Wak(T) if c =0 (mod p). 

We have also 
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* That is, a parabolic vertex, which here must be i oo or a rational point on the real axis. See 

for example J. Lehner, Discontinuous Groups and Automorphic Functions, Math. Surveys, No. 8, 
Amer. Math. Soc., Providence, R. I., 1964, p. 129 and note 5a. 
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(2.3) Wk+p(-r) = W-k(-r) = Wk(-r) 

so that there are just q = (p - 1)/2 distinct functions Wk(r), which are clearly 
by (2.2) functions on r(p). Further since all the functions Wk( r) are finite and 
nonzero at the cusp r = O of ro(p), by Eq. (2.17) of Fine [5], the only cusps of 
r(p) where Wk(T) can have a pole or zero are those equivalent to r = io on 
ro(p), which are just those equivalent to r = ioo on roo(p). Now the coset rep- 
resentatives of r (p) in ro0(p) may be taken in the form Ra(-r) = (ar + bp)/(pr + d) 
(a = 2 to q), Rl(r) = r, so that we have using (2.2) the following result. 

LEMMA 1. Let C1 = ioo, Ca = a/p (a = 2 to q), be the inequivalent cusps of r(p) 
which are equivalent to ioo on ro0(p), and let Va(k) be the valence of Wk( r) at Ca. 

Then, writing vi(k) = v(k), we have va(k) = v(ak). 
We now consider 

F(r) = Wkbk(T) 
k=1 

where bk (k = 1 to q) are any positive, negative, or zero integers. It follows from 
Lemma 1 and the previous results that F(-r) is a function on r(p), regular and 
nonzero except possibly at the cusps Ca, whose valence at Ca is 

q 
(2.4) Va = Z bkv(ak) (a = I to q). 

k=1 

We shall say that a set (Vi, V2, * , Vq) is a cyclic set if for some integral choice 
of bk (2.4) is satisfied; if in addition V1 < 0 and Va > 0 (a = 2 to q) we shall say 
that it is a special set and that - V1 is a value. Then from the definition of Section 
1 we have 

LEMMA 2. A value is a nongap for r(p). 
The converse of course is not necessarily true in general, but it turns out to be 

true in all the cases we consider. Thus we get rather more than is asserted by the 
Gap Theorem; for nongaps we can obtain functions with a pole at i all of whose 
zeros are at other cusps. 

3. Since the local variable at i o on r(p) is x = exp (27rir/p), it follows from 
(2.1) that 

v(k) = 6k2- kp if I < k < p/4, 

(3.1) v(k) = 6k2 - 5kp + p2 if p/4 < k < q. 

We now let h be a primitive root of p and reorder v(k) and bk by writing 

(3.2) u(k) = v (ak) , Ck = bak (k = 1 to q), 

where ak is the least positive integer congruent to 4+hk-1 (mod p), so that u(k) 
(k = 1 to q) can be explicitly found from (3.1), and the inequalities necessary for 
a special set assume, using (2.3) and (2.4), the cyclic form 

V1 = clu(1) + c2u(2) + * + cqu(q) < 0 , 
V2 = c2u(1) + c3u(2) + * + clu(q) ? 0, 

(3.3) 
Vq = cqu(1) + ciu(2) + * + cq,iu(q) ? 0, 

for some integral choice of Ck (k = 1 to q) 
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(We have also reordered, but not renamed, the Va for a > 1.) We observe 
that the problem of satisfying (3.3) is a rather special case of integer program- 
ming, but in fact we proceeded as follows. It is easily seen from (3.1) and (3.3) 
that if any of the Va is divisible by p then so are all the others; in this case F(r) 
is in fact a function on rP, and not merely on r (p), and if n is a value arising 
from a special set then n/p is a nongap for rj at the cusp i o. Thus starting with 
the u(k) we obtain cyclic sets with Va 0 (mod p); using these we obtain by a 
small random search special sets with Va =_ 0 (mod p). Now using these as bases 
we perform further small random searches to satisfy (3.2); once we have obtained 
g values less than or equal to 2q the gap series is known, consisting of the g num- 
bers less than 2g which are not values. 

Since 1(r) = Ea=1 F(R&r) is a function on roo(p) we see also that -mina Va 
is a nongap* for re0(p) at i oo for any cyclic set Va, which turned out to be sufficient 
to identify the gap series at i o for roe(p) in the cases given. 

While the evidence of these results is insufficient to justify any formal conjec- 
ture, the natural question arises as to whether for all prime p one can obtain the 
gap series at i oo for r1(p), ro0(p), rP and ro(p) by the use of these rather special 
functions. A further problem is whether i oo is a Weierstrass point of rp, for p > 17, 
which seems possible. As to ro(p), I have not found any value of p for which i o 
is a Weierstrass point. 

In the table below we give the genus of each subgroup and list the nongaps less 
than or equal to g and the gaps greater than g. Otherwise numbers less than or 
equal to g are gaps, and numbers greater than g are nongaps. 

* Provided the leading terms do not cancel, for which a sufficient condition is that the mini- 
mum is attained an odd number of times. 

TABLE 1 

Group Genus Nongaps Gaps 

nil 1... 
r13 2 
r17 5 5 6 
r19 7 6 8 

re(i1) 6 5 11 
rFo(13) 8 7 9 
roo(17) 17 12 20 
roo(i9) 22 15, 22 23, 31 

r(ii) 26 19, 22, 24, 25 27, 30, 31, 36 

r(13) 50 39, 42, 47 55, 60, 64 

r(17) 133 85, 88, 110, 113, 115, 119, 134, 135, 139, 143, 144, 
123, 126, 127, 133 149, 150, 157, 164, 178 

r(19) 196 114, 147, 161, 162, 171, 197, 198, 199, 200, 204, 
174, 177, 179, 186, 189, 205, 206, 213, 220, 226, 
190, 191, 192, 194, 195 227, 229, 233, 234, 256 
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4. I am indebted to the referee for pointing out that the description in Section 
3 of the computation as it appears to the machine is theoretically complete but 
unilluminating to the reader. Accordingly we give here a description of the process 
for the case p = 11 with some numerical details. We have 

p = 1, q= 5, v(1) = -5, v(2) = 2, v(3) = 10, v(4) -3, v(5) -4, 

from (3.1). Next 2 is a primitive root of 11, and we take al = 1, a2 = 2, a3 = 4, 
a4 = 3, a(5 = 5, giving by (3.2) the values 

u(l) = -5, u(2) = 2, u(3) =-3, u(4) = 10, u(5) =-4. 

Thus the inequalities of (3.3) become 

Vi = -5cl + 2c2- 3c3 + 10C4- 4c5 < 0, 
V2 = 2c, - 3C2 + 1OC3- 4C4 - 5c5 > 0, 

V3 = -3c, + 10C2- 4C3 - 5c4 + 2c5 > 0, 
V4 = 1Oc - 4c2 - 5Co + 2c4- 3c5 > 0, 

V5 = -4c - 5C2 + 2c3 - 3c4 + 10C5 > 0. 

We now exhibit choices of ci (i = 1 to 5) giving cyclic sets Vi (i = 1 to 5), using 
the symbol C for cyclic sets and S for special sets. 

Ci C2 C3 C4 C5 Vl V2 V3 V4 V5 
0 -1 0 -2 0 -22 11 0 0 11 (SI) 
0 0 -1 0 -2 11 0 0 11 -22 (C1) 
0 -2 -1 -4 -2 -33 22 0 11 0 (S2)=2(S1)+(Cl) 
1 1 0 0 0 -3 -1 7 6 -9 (C2) 
1 0 0 -2 0 -25 10 7 6 2 (S3)=(S1)+(C2) 
... etc. 

The special sets (Si) and (S2) with Vi = 0 (mod 11) are found first, giving values 
22 and 33; then (C2) is a typical cyclic set with small Vi which added to (SI) gives 
a special set (S3) and a value 25. The random search consists of testing the addi- 
tion to (Si) and (S2) of various cyclic sets similar to (C2); whenever V >_ 0 
(i = 2 to 5) we obtain a value - V1. 

The Atlas Computer Laboratory 
Chilton, Didcot, England. 
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